MATHEMATICS

Mob.: 9470844028 9546359990

Ram Rajya More, Siwan

XIth, XIIth, TARGET IIT-JEE (MAIN + ADVANCE) & COMPETITIVE EXAM. FOR XII (PQRS)

ADJOINT AND INVERSE OF A MATRIX

& Their Properties

	CONTENTS
Key Concept-I	***************************************
Exercise-I	***************************************
Exercise-II	
Exercise-III	***************************************
	Solutions of Exercise
Page	***************************************

THINGS TO REMEMBER

If $A = [a_{ij}]$ is a square matrix of order n and C_{ij} denote the confactor of a_{ij} in A, then the transpose 1. of the matrix of cofactors of elements of A is called the adjoint of A and is denoted by adj A.

i.e., adj
$$A = [C_{ij}]^T$$

$$\begin{bmatrix} a_1, & a_{12} & a_{13} \end{bmatrix} \qquad \begin{bmatrix} C_{11} & C_{12} & C_{13} \end{bmatrix}$$

If
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, then adj $A = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}$

The adjoint of a square matrix of order can be obtained by interchanging the diagonal elements and 2. changing the signs of off-diagonal elements.

If,
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then adj $A = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

- If A is a square matrix of order n, then $A(adj A) = |A| I_n = (adj A)A$. 3.
- Following are some properties of adjoint of a square matrix: 4.

If A and B are square matrices of the same order n, then

(i)
$$adj(B) = (adj b)(adj A)$$

(ii)
$$\operatorname{adj} A^{T} = (\operatorname{adj} A)^{T}$$

(iii) adj (adj A) =
$$|A|^{n-1}$$
 A

(iv)
$$|adj A| = |A|^{n-1}$$

A square matrix A of order n is invertible of there exists a square matrix B of the same order such 5. that $AB \setminus I_n = BA$.

In such a case, we say that the inverse of matrix A is B and we write $A^{-1} = B$.

Following are some properties of inverse of a matrix:

- Every invertible matrix possesses a unique inverse.
- If A is an invertible matrix, then $(A^{-1})^{-1} = A$
- (iii) A square matrix is invertible iff it is non-singular
- (iv) If A is a non-singular matrix, then

$$A^{-1} = \frac{1}{|A|} (adj A)$$

- If A and B are two invertible matrices of the same order, then $(AB)^{-1} = B^{-1} A^{-1}$
- (vi) If A is an invertible matrix, then $(A^{T})^{-1} = (A^{-1})^{T}$
- (vii) The inverse of an invertible symmetric matrix is a symmetric matrix.

(viii) If A is a non–singular matrix, then
$$|A^{-1}| = \frac{1}{|A|}$$

- 6. The following are three operations applied on the rows (columns) of a matrix:
 - Interchange of any two rows (columns).

- (ii) Multiplying all elements of a row (column), the corresponding elements of any other row (column) multiplied b an scalar.
- A matrix obtained from an identity matrix by a single elementary operation is called an elementary 7. matrix.
- Every elementary row (column) operation on an m × n matrix (not identity matrix) can be obtained 8. by pre-multiplication (post-multiplication) withthe corresponding elementary matrix obtained from the dentity matrix $I_m(I_n)$ by subjecting it to the same elementary row (column) operation.
- 9. In order to find the inverse of a non-singular square matrix A by elementary operations, we write

Now we perform a sequence of elementary row operations successively on A on the LHS and the pre-factor I on RHS till we obtain

$$I = BA$$

The matrix B, so obtained, is the desired inverse of matrix A.

EXERCISE-1

- Every invertible matrix possesses a unique inverse. 1.
- The inverse of an invertible symmetric matrix is a symmetric matrix. 2.
- If A is an invertible matrix of order 3 and |A| = 5, then find |A| = 5, then find |A| = 5. 3.
- If A and B are non-singular square matrices of the same order, then adj AB = (adj B) (adj A). 4.
- If A is an invertible square matrix, then adj $A^T = (adj A)^T$. 5.
- Prove that adjoint of a symmetric matrix is also a symmetric matrix. 6.
- If A is an invertible matrix of order 3×3 such that |A| = 2, then find adj (adj A). 7.
- If $A = \begin{vmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{vmatrix}$, find adj A and verify that $A(\text{adj }A) = (\text{adj }A)A = |A| I_3$.
- 9. If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$, show that $A^{-1} = \frac{1}{19}A$.
- 10. Find the inverse of $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ and verify that $A^{-1}A = l_3$.
- 11. If $A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$, show that $A^T A^{-1} = \begin{bmatrix} \cos 2x & -\sin 2x \\ \sin 2x & \cos 2x \end{bmatrix}$.
- 12. If $A = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$, verify that $(AB)^{-1} = B^{-1} A^{-1}$.

By: Dir. Firoz Ahmad

- 13. For the matrix $A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$, find the numbers a and b such that $A^2 + aA + bI = 0$. Hence, find A^{-1} .
- 14. Show that the matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ satisfies the equation $A^2 4A 5I_3 = O$ and hence find A^{-1} .
- 15. Given $A = \begin{bmatrix} 5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}$, $B^{-1} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$. Computer $(AB)^{-1}$.
- 16. Show that : $\begin{bmatrix} 1 & -\tan\frac{\theta}{2} \\ \tan\frac{\theta}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \cos\theta & -\sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$
- 17. Showt that $A = \begin{bmatrix} -8 & 5 \\ 2 & 4 \end{bmatrix}$ satisfies the equation $A^2 + 4A 42I = 0$. Hence, find A^{-1} .
- 18. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 5A + 7I = 0$. Hence, find A^{-1} .
- 19. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$, verify that $A^2 4A + I = O$, where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
- 20. If $A = \frac{1}{9} \begin{bmatrix} -8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4 \end{bmatrix}$, prove that $A^{-1} = A^{T}$.
- 21. Solve the matrix equation $\begin{bmatrix} 5 & 4 \\ 1 & 1 \end{bmatrix} X = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$, where X is a 2 × 2 matrix.
- 22. Find the matrix X for which $\begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix} X \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 0 & 4 \end{bmatrix}$.
- 23. For the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$. Show that $A^3 6A^2 + 5A + 11I_3 = 1$.

- 24. If $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$. Verify that $A^3 6A^2 + 9A + 4I = O$ and hence find A^{-1} .
- 25. If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$, find the value of λ so that $A^2 = \lambda A 2I$. Hence, find A^{-1} .
- Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ by using elementary row transformations.
- If A is a square matrix of order 3 such that |A| = 5, write the value of |adj A|.
- 28. If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ and $(adj \ A) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then find the value of k.
- 29. If A is a square matrix such that $A(\text{adj }A) = \begin{vmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{vmatrix}$, then write the value of |adj A|.
- 30. If $A = \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix}$, then find |adj A|.

- 1. If $S = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then adj A is
 - (a) $\begin{bmatrix} -d & -b \\ -c & a \end{bmatrix}$ (b) $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ (c) $\begin{bmatrix} d & b \\ c & a \end{bmatrix}$ (d) $\begin{bmatrix} d & c \\ b & a \end{bmatrix}$

- If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$, then the value of |adj A| is
 - (a) a^{27}

(b) a^9

(c) a^6

- (d) a^2
- If B is a non-singular matrix and A is a square matrix, then det (B-1 AB) is equal to 3.
 - (a) $Det(A^{-1})$
- (b) $Det(B^{-1})$
- (c) Det(A)
- (d) Det(B)
- If A and B are square matrices such that $B = -A^{-1}BA$, then $(A + B)^2 =$
 - (a) O

- (b) $A^2 + B^2$
- (c) $A^2 \mid 2AB + B^2$
- (d) None of these

By: Dir. Firoz Ahmad

- 5 10 3 The matrix $\begin{vmatrix} -2 & -4 & 6 \end{vmatrix}$ is a singular matrix, if the value of b is 5.
 - (a) -3

(b) 3

(c) 0

- (d) non-existent
- If A is a square matrix such that $A^2 = I$, then A^{-1} is equal to
 - (a) A + I
- (b) A

(d) 2A